a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(false, X, Y) → MARK(Y)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
MARK(div(X1, X2)) → MARK(X1)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(false, X, Y) → MARK(Y)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
MARK(div(X1, X2)) → MARK(X1)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(false, X, Y) → MARK(Y)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
s1 > AGEQ1
AGEQ1: [1]
s1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
s1 > AMINUS1
AMINUS1: [1]
s1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
A__IF(false, X, Y) → MARK(Y)
A__IF(true, X, Y) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
MARK(div(X1, X2)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)